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MONTE CARLO METHOD FOR RADIATIVE TRANSFER? 
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Abstract-A Monte Carlo method for the numerical solution of nonlinear, frequency-dependent, radiative 
transfer problems is described. The accuracy of the method is investigated with respect to the number of 
particles required, propagation of statistical error, truncation error and convergence to a known solution. 
The solution of a simple frequency-dependent radiative heating problem is illustrated. Gray-body calcula- 
tions using both the Planck mean absorption coefficient and the Rosseland mean free path are compared 

with the frequency-dependent calculation. 
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NOMENCLATURE 

radiation constant 8n5k4/15c3h3 ; 
Planck function ; 
velocity of light ; 
specific heat at constant volume ; 
base of natural logarithms ; 
material energy density ; 
energy of particle p ; 
radiation energy density; 
r component of radiation flux 

E, F, 
vector ; \u, ‘I, 

corresponding frequency integra- X, position coordinate. 

ted quantities ; 
Planck’s constant ; 

Greek symbols 

Z(r, I4 t). 
j, 
J, 
k, 
WL, ~7, 
N, 
w, 0, 

the monochromatic specific in- 
tensity of radiation ; 
the frequency integrated intensity; 
zone number in the space mesh ; 
maximum number of zones ; 
Boltzmann constant ; 
scattering kernel ; 
number of particles ; 

rr component of radiation pressure 
tensor ; 

r, position coordinate ; 

S,o’)> 

S bdy, 

S ‘X”, 

S eno 

4 
T, 
l-2 
4 

distance travelled in zone 
particle p; 
distance to zone boundary 
the particle path ; 
distance to census; 
distance to encounter ; 
time ; 
temperature ; 
first approximation to T”++ 
random variable in 
,n 1,. 

j by 

along 

. . 
9 

the interval 

geometry index ; 
zone indicator for particle p; 
energy absorbed in zone j on the 
time step At; 

7 This work performed under the auspices of the U.S. 
Atomic Energy Commission. 

$ Present address: Department of Physics and 
Astronomy, University of New Mexico, Albuquerque, New 
Mexico 87106. 
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small increments of position ; 
time increment ; 
volume of zone j; 
index of energy conservation ; 
the time average of E ; 
mean free path ; 
Rosseland mean free path ; 
direction cosine relative to the r 

axis ; 
frequency of radiation ; 
mass density ; 
absorption cross-section in units 
of (length)- ’ ; 
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Subscripts 
0, 

j, 

j + f. 
P? 

Superscripts 

V, 

n, 
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scattering cross-section; 
Planck mean absorption cross- 
section. 

indicates a given reference value 
which is constant ; 
refers to the mesh position rj = 
jAr; 
refers to the center of zone j; 
refers to particle p. 

frequency index (absence of super- 
script v indicates the correspond- 
ing frequency integrated quantity) ; 
refers to time t” = n At. 

1. INTRODUCTION 

THE LAST several years have brought an in- 
creasing need for the development of more 
powerful methods for the numerical computa- 
tion of nonlinear, frequency-dependent radiation 
transport. Two fundamentally different pro- 
cedures are available : the Monte Carlo method, 
based on a discrete representation of the radia- 
tion field; and finite difference methods, based 
on a continuous representation. The Monte 
Carlo method is a direct simulation of the physi- 
cal system by means of statistical sampling. In 
finite difference methods, the set of nonlinear 
integro-differential equations which define the 
system are approximated by finite difference 
equations on a net of points covering the region 
in which the solution is required. 

In computer methods, the nonlinear character 
of the problem presents little difficulty. The 
critical aspects of the problem are the presence 
of complicated geometrical configurations and 
the large variation and considerable complexity 
of the cross-sections. Although finite difference 
schemes have been developed to handle large 
variations in cross-section [l, 21, the Monte 
Carlo method is particularly well-adapted to 
deal with both aspects of the problem. The 

Monte Carlo method is limited, by its statistical 
nature, to calculations where high accuracy is 
not required. Thus, the source of the great 
power of the method is also the source of its 
essential limitation. 

Until recently, Monte Carlo techniques were 
applied only to linear transport calculations. A 
bibliography of early Monte Carlo work is 
given by Kraft and Wensrich [3]. For an excel- 
lent review of more recent work. including some 
nonlinear applications, refer to Howell [4]. A 
basic Monte Carlo method for nonlinear radia- 
tive transfer is outlined in this paper. A more 
complete account, including detailed flow charts. 
is given by Campbell and Nelson [S]. For those 
readers unfamiliar with basic Monte Carlo 
concepts. the work of Kahn [6] is recommended. 

2. FORMULATION OF THE PROBLEM 

To define the scope of this paper, the follow- 
ing formulation of the nonlinear radiative 
heating problem is given. This formulation, 
although not complete, is both general and 
simple enough to provide a convenient vehicle 
for the study of basic transport methods. 

Under the restrictions of local thermodynamic 
equilibrium and conservative scattering, the 
transport equation for one-dimensional sym- 
metry becomes 

1 arv arv a(1 - /?)8Z” 

Lat+‘Z++ r 
___ - + (a,’ + a,)l” 

ap 

1 

= aiB’(T) + as 
s 

K(cL, /J)&‘) d$ (1) 
-1 

where LY = 0 for plane geometry and CL = 2 for 
spherical geometry. 

To evaluate the temperature-dependent cross- 
sections and the Planck function, B’(T), one 
must keep an account of the energy exchange 
between the radiation field and the material. 
When equation (1) is multiplied by 2n and inte- 
grated over all p and v, the conservative scat- 
tering terms drop out with the result 
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where E,(T) is the material energy density. 
The material energy density must be expressed 

in terms of the temperature T by an equation of 
state. A simple example is the ideal gas equation 
of state, 

J%(T) = pc,T (3) 

where p is the mass density and c, the specific 
heat. 

The transport equation (1) and the appro- 
priate boundary conditions, together with the 
energy balance equations (2) and the equation 
of state (3), constitute the complete set of basic 
relations which define the problem to be con- 
sidered in this study. 

3. BASIC STRUCI-URE OF THE METHOD 

We superpose upon the region of interest 
[0 G r < rmax, 0 < t] a rectangular mesh, 

[rj=jAr,j=0,1,2 ,..., J; 

t” = n At, n = 0, 1, 2,. . . 1. (4) 

The procedure is to construct within the mesh a 
Monte Carlo algorithm of the solution to the 
transport equation (1). 

“Particles”, groups of photons with common 
properties, are emitted throughout each space- 
time zone [rj, Ar; t”, At], as determined by the 
emission function Q”(T) evaluated at the zone 
center. Particles can also enter the system 
through the boundaries according to the pro- 
perties of an external source, e.g. an external 
radiation field. After entering the system a 
particle is followed along its trajectory through 
the mesh until it is absorbed at some point 
(r, t). If the particle encounters a scattering 
event, it will emerge with a new direction, 
energy and frequency as determined by the 
scattering law. 

At census time, t”+ i, energies are tallied in 
each space zone [rj, Ar], and the properties of 
the radiation field are determined from the 
distribution of the particles. The balance of 
emission and absorption over the time step is 
calculated, and new material temperatures are 
obtained. The procedure is then repeated for 
each subsequent time step until the problem is 
terminated. 

(a) Source particle generation 
The number of source particles, Nj, to be 

emitted in each zone over a time step is arbitrary 
but must be judiciously controlled in order to 
minimize statistical fluctuations in the radiation 
field properties. The energies of the source 
particles are determined by dividing the total 
energy emitted over the time step in each zone 
equally among the Nj source particles assigned 
to the zone. 

In addition to the energy E, the following 
characteristics must be assigned to each source 
particle emitted in zone j: point of emission 
(rP, t,) in the elementary rectangle [rj, Ar ; 

t”, At], direction cosine pp frequency vp and 
distance to encounter S,,,, which may be either 
a scattering event or absorption. The values for 
S,,, must be assigned in such a way that en- 
counters in a large group of particles occur 
exponentially 

where gt = (Q~ + cS), and u is a random variable 
uniformly distributed in the interval (0, 1). After 
a particle travels a distance equal to S,,, the 
event is absorption if 

and scattering otherwise. 
The values for rP t, p,,, vP are distributed’ 

among the Nj source particles so as to reflect the 
appropriate properties of the emission function 
C@‘(T). In the simplest scheme; the emission 
function is considered uniform over the zone 
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and equal to the value at the zone center frame of the electron 

rp = ‘j + u At 

t, = t” + u At. 

Since the emission is isotropic, the direction 
cosines are distributed uniformly in the interval 

(- 1, I) 

K(PL, cl’) = M3 - P2) + (3P2 - w)21 
and the new direction is obtained by a rejection 
process. In conservative scattering the energy 
and frequency of the particle are left unchanged. 

pLp = 1 - 2u. 

The frequencies are obtained from the emission 
function by a random sampling procedure [6]. 
A rejection process, although simple to construct, 
is not efficient ; use of the cumulative probability 
distribution is efficient but difficult to construct 
in the case of cross-sections with lines and 
absorption edges. 

(d) Radiationfield properties 
The properties of the radiation field can be 

calculated in two different ways : by the indicator 
or counting method, and by the expected value 
method. 

The indicated values for the frequency inte- 
grated energy density, flux, and radiation pres- 
sure are 

(b) Particlefollowing 
After a particle enters the system it must be 

advanced through successive events until it 
either exits from the system, is absorbed, or 
reaches census at time t”+ ‘. Three distances 
along the particle path are required : the distance 
to the nearest zone boundary Sbdr the distance 
to census S,,,, and the distance to encounter 
s CIIC’ If the particle crosses a zone boundary, 
S,,, must be modified to account for the result- 
ing change in cross-section : 

K”C = Lc - &ly) ;, 

If the particle reaches census, the coordinates 
rP and pP are computed for census time t”+ ’ and 
stored together with EP and vP for use on the 
next cycle. When a particle is absorbed or leaves 
the system, its history is ended. 

(c) Conservative scattering 
If a particle moving in the direction p’ 

encounters a scattering event, a new direction is 
chosen by random sampling from the scattering 
kernel K(p, p’). For isotropic scattering the new 
direction is independent of p’ and given by p = 
1 - 2~. For Thompson scattering in the rest 

where S,@ = 1 if rj 6 rp < rj+ 1, and S,(J = 0 
otherwise. The expected values for these quan- 
tities are given by 

1 
E j++ = m 

J c 
%jE, 

P 

F 
C 

j++ = m 
J c 

S,t_il 
c PPEP 

P 

pj++ = & 
q.d 2 

J c 

c PPEP 

P 

where S,(i) is the distance travelled in zone j, 
by the particle p, on the time interval [t”, At]. 

The indicated value for the absorption in a 
zone is simply the sum of E, for all particles 
absorbed in the zone on the time interval. The 
expected value for the total absorption in zonej 
over the interval is 

AEa&) = c S,o’) QE, 
P 
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In regions where the mean free path is much 
larger than c At or Ax, the expected values for 
absorption show less statistical fluctuation than 
the indicated values. In regions of small mean 
free path, where most of the particles are ab- 
sorbed, the indicated values are generally more 
accurate. 

(e) Temperature calculation 
The energy absorbed in each zone AEebs(j) is 

obtained from the Monte Carlo calculation on 
the basis of the extrapolated temperature 

Ti*,+ = Tj”++ + gTj”++ -T;;f) 

which is assumed constant over the time step. 
The energy balance equation (2) is approximated 
by the difference form 

Wdi) 

- c At$T’jzt) a(T;ff)4. 

The difference equation is solved in each zone 
for T;ff by Newton-Raphson iteration, assum- 
ing that 

Tj”++f = +(T;++ + T;=f). 

It should be noted that in this treatment of the 
temperature equation the emission term 
c At apaT is allowed to seek its own level in the 
iteration. Thus the equation is “buffered” with 
respect to statistical fluctuations which occur in 
the absorption term AE,JAV. As a result 
fluctuations in the temperatures are damped to 
a considerable extent, although energy is not 
conserved identically. The nonconservation of 
energy permits the use of this requirement as 
an important check on the accuracy of the calcu- 
lation. 

4. ACCURACY OF THE METHOD 

There are two main sources of error in the 
Monte Carlo method: statistical error and 
truncation error. A measure of the accuracy of 
the calculation is given by the energy check, 6, 
where at any time 

Since 6 exhibits considerable fluctuation in the 
course of the calculation, one is interested princi- 
pally in;, the time average, and + J[(&)‘], the 
mean square fluctuation. 

Figures l-4 illustrate the results of test prob- 
lems designed to investigate the accuracy of the 
method. In each problem a plane, semi-infinite 
slab is heated by an external radiation field, 
B”(T,). The slab is characterized by a constant 
absorption cross-section and constant specific 
heat. 

(a) Statistical error 
In Fig. 1 it can be seen that 2 approaches a 

lower limit as the total number of particles used 
at each time step in the calculation increases. 
The lower limit is set by the truncation error. In 
general, F cc ,/N so that no substantial reduction 
in 7 can be achieved by using more than 4000 
particles. 

Consequently, it can be assumed that the 
average of ten runs of the same problem with 
different sets of random numbers and 4000 
particles is very close to the true solution (apart 
from truncation error), and that the variance 
obtained from the ten runs represents the pro- 
bable statistical error in any single 4000- 
particle run. Figure 2 reveals that the average of 
forty runs with different random numbers and 
500 particles falls within the probable error of 
any single 4000-particle run. Therefore, it seems 
safe to conclude that, at least in this calculation, 
there is no propagation of statistical error. 

(b) Truncation error 
Figure 3 illustrates the dependence of T on 

the space, time zoning. The temperature equa- 
tion is differenced such that the truncation error 
is quadratic in At. As Ar is reduced the statistical 
error increases, owing to a reduction in the 
number of particles per zone. Figure 4 shows the 
convergence of the Monte Carlo solution to a 
finite difference solution as Ar is reduced. 

(total radiation and material energy in the system) 

’ = - ’ + (total energy to enter the system) - (total energy to leave the system)’ 
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constant specific heat is exposed to an external 
radiation field, B’(T,).- The transport properties 
of the material are given by 

x [1 -exp (--$)],~~=0. (5) 

For this cross-section the Planck mean becomes 

15 T-3 
o,(T) = 2 00 T, 0 (6) 

FIG. 1. Energy check, Z, as a function of the number of particles 
used in the calculation of a slab heating problem with con- 

stant mean free path (Ax = c At = 0.5 A). * (7) 

The radiation and material energy densities 
5. SAMPLE CALCULA’MON in the slab are initially zero ; it is necessary to 

To illustrate the Monte Carlo method in a obtain the distribution of these quantities as a 
frequency-dependent calculation, the following function of time. 
radiative heating problem is considered. A Figure 5 gives the distribution of temperature 
plane, semi-in~nite slab of constant density and and radiant energy in a slab for gray-body 

I.0 

O-5 

0 

DENSITY E/or, -,_ 

0 I.0 ixJ 3-o 
DISTANCE, X 

FIG. 2. Comparison of the average of ten ~particle runs with different 
sets of random numbers with the average of forty WO-particle runs with 
different random numbers (Ax = c At = 0.2). Temperatures were calculated 

for the ideal gas equation of state with pc, = 0.5917 0:. 
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FIG. 3. Energy check, 2, as a function of the mesh size for a slab heating problem 
with constant mean free path The calculations were performed with 400 particles. 

0 I 2 3 4 5 6 ? 6 9 
DISTANCE,x/X 

FIG. 4. Convergence of the Monte Carlo temperatures to the profile given by a finite difference 
solution. The finite difference solution is that given by Campbell [2], Fig. 1. Temperatures 
are for the ideal gas equation of state with pc, = 0.5917 aT& In each of the Monte Carlo 

calculations, 4000 particles were used. 
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transport using the Planck mean (6), for diffu- nonequilibrium diffusion calculation is that 
sion using the Rosseland mean (7) and for described by Campbell and Nelson [5]. In both 
frequency-dependent transport using the cross- of the Monte Carlo calculations 4000 particles 
section (5). were used with c At = 2.5 l,,, Ax = 5 1,. The 

All of the calculations were coded in FOR- frequency-dependent calculation with expected 
TRAN and executed on the IBM-7094. The values requires 1.5 s/c/thousand particles; a 

2L 
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DISTANCE ,x/XC 

FIG. 5. Comparison of frequency-dependent transport with frequency-average transport 
using the Planck mean (6), and frequency-average diffusion using the Rosseland mean (7). 
Temperatures were obtained for the ideal gas equation of state with pc, = 0.5917 ~7’:. 

total running time of 40 min for the problem 
of Fig. 5. 

It is clear that the gray-body approximations 
are not at all appropriate for the solution of 
this problem. Agreement between a frequency- 
dependent calculation and a frequency-average 
calculation, which assigns a single mean free 
path to all particles in any small volume, can be 
expected only when the distance scale of the 
problem is large compared to the distribution 
of mean free path for the different frequencies 
present. 

6. CONCLUSIONS 

In this report a basic Monte Carlo method for 
nonlinear radiative transfer is described. Al- 
though the method has been illustrated here for 
only simple examples, it has been used success- 
fully in many complex problems of a classified 
nature. The application to more realistic cross- 
sections and geometry requires little modifica- 
tion of the basic method. 

The main advantage of Monte Carlo is that it 
directly simulates the physical process of par- 
ticle transport; the application is straight- 
forward (conceptually at least), and the correct 

physical behavior of the system is insured. The 
main disadvantage is that, in some problems, 
direct simulation of the physical process is an 
inefficient procedure for computation. For ex- 
ample, it is especially difficult to do diffusion or 
quasi-equilibrium calculations by Monte Carlo. 
In any region in equilibrium, the same energy 
that is emitted must be absorbed over a time 
step. Thus, the Monte Carlo temperatures are 
obtained from the difference of two large num- 
bers, nearly equal, both of which contain 
statistical fluctuations. 

Although .Monte Carlo and finite difference 
calculations are comparable in terms of size, 
complexity and memory requirements, signi- 
ficant differences are found in accuracy and 
computing time. In Monte Carlo calculations, 
statistical error can be reduced by increasing the 
number of particles, and hence the running 
time. For this reason, it is difficult to give a 
meaningful comparison between the two me- 
thods except in specific examples. Campbell [2] 
solves the problem of Fig. 5 by a discrete ordi- 
nate method (with no statistical error) in some- 
what less computing time than the Monte 
Carlo. In simple problems, such as that of Fig. 5. 
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finite difference methods generally have the 
advantage. In problems with material dis- 
continuities at zone interfaces and complicated 
geometrical configurations, Monte Carlo has 
the advantage. 

At present, there is no one method of numeri- 
cal computation capable of handling all the 
radiative heating problems encountered in en- 
gineering applications. It is therefore advan- 
tageous to have both Monte Carlo and finite 
difference methods available for the solution of 
these problems. 

2. P. M. CAMPBELL, Finite difference methods for nonlinear 
radiation transport, University of California Lawrence 
Radiation Laboratorv Reot. UCRL-12411 (1965). 

3. R. KRAFT and C. W-&&X, Monte Carl; meihods, a 
bibliography covering the period 1949-1963, University 
of California Lawrence Radiation Laboratory Rept. 
UCRL-7823 (1964). 

4. J. R. HOWELL, Calculation of radiant heat exchange by 
the Monte Carlo method, ASME paper 65-WA/HT-54 
(1965). 

5. P. CAMPBELL and R. NELSON, Numerical methods for 
nonlinear radiation transport calculations, University 
of California Lawrence Radiation Laboratory Rept. 
UCRL-7838 (1964).t 

6. H. KAHN, Applications of Monte Carlo, Rand Corpora- 
tion Rept. AECU- (1954). 

REFERENCES t UCRL Documents can be obtained from the clearing 
1. I. P. GRANT, Numerical approximations in radiative house for Federal Scientific and Technical Information, 

transfer, Royal Astronom. Sot. Monthly Notices, 125, National Bureau of Standards, U.S. Dept. of Commerce, 
417 (1963). Springfield, Va. 

R&m&On dCcrit une mtthode de Monte Carlo pour la solution numtrique des problemes non-linkaires 
du transport par rayonnement avec dCpendance de la frtquence. La precision de la methode est Ctudite 
en tenant compte du nombre de particules nCcessaires, de la propagation de l’erreur statistique, de I’erreur 
de troncature et de la convergence vers une solution connue. 

On donne en exemple la solution d’un probleme simple d’tchauffement par rayonnement avec dCpen- 
dance de la fr6quence. Les calculs de corps gris employant & la fois le coefficient d’absorption’ moyen-de 
Planck et le libre parcours moyen de Rosseland sont cornpar& avec le calcul avec dCpendance de la 

frtquence. 

ZllsPmmenfm-Eine Monte Carlo Methode zur numerischen Liisung nichtlinearer, frequenzabhln- 
giger Strahlungsprobleme wird beschrieben. Die Genauigkeit der Methode wird untersucht im Hinblick 
auf die Zahl der erforderlichen Partikel, dem Fortschreiten des statischen Fehlers, des Abbruchfehlers 
und der Ubereinstimmung mit einer bekannten Msung. Die L(isung eines Problems der einfachen 
frequenzabhlngigen Strahlungsheizung ist gezeigt. Berechnungen des grauen Kiirpers sowohl mit Hilfe 
des Plank’schen mittleren Absorptionskoefflzienten als such der mittleren freien Wegllnge nach Rosseland 

werden verglichen mit der frequenzabhlngigen Berechnung. 

hiHoTaqasr-&nicaH MeTon Mome Rapno JJJIH wCneHHOrO pemeUuK KenuHetHblx aagau 

l10 JlyWICTOMy Temo06rdeny, &XaBuCRlqeMy OT 9aCTOTbl. TOqHOCTb MeTOAa uCCne~OBanaCb B 

BPBUCUMOCTU OT WW,Jla Heo6xo~umx 'IaCTUlJ, CTaTUCTU~eCK0i-t KOrpeIIIHOCTu, OlUu6KU 

BCJIeJ(CTBue OT6paCbIBaHuK WleHOB u CBeJJeHuR K U?lBeCTHOMy peUIeHuN3. AaHO peIUeHue 

UpOCTOt awaw Jly'XUCTOrO TennOO6MeHa, aaBucfirqer0 OT 'IaCTOTbJ. PacreTn AJIR ceporo 
Tena, ucnonbayro~ue Cpe~Uutl Koa+#iqueHT a6cop6quu nnaHKa u Cpe~Hmo J(JIUHY CBO- 

6ogHoro npodera PoccenaHxa, CpaBHUBalOTCJI C paCqeTaMU JIyWCTOrO TelInOO6MeHa, 

aasucfrqero 0T 9acToTbI. 


